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Viscous fluid flows with curved streamlines can support both centrifugal and viscous 
travelling wave instabilities. Here the interact,ion of these instabilities in the context 
of the fully developed flow in a curved channel is discussed. The viscous 
(Tollmien-Schlichting) instability is described asymptotically a t  high Reynolds 
numbers and i t  is found that i t  can induce a Taylor-Gortler flow even a t  extremely 
small amplitudes. I n  this interaction, the Tollmien-Schlichting wave can drive a 
vortex state with wavelength either comparable with the channel width or the 
wavelength of lower-branch viscous modes. The nonlinear equations which describe 
these interactions are solved for nonlinear equilibrium states. 

1. Introduction 
There are many fluid flows of practical importance where destabilizing centrifugal 

and viscous instability mechanisms are both present. Thus, for example, the flow in 
a curved rectangular duct or the flow over parts of a laminar flow wing (see Harvey 
& Pride 1982) can support both Taylor-Gortler vortices and Tollmien-Schlichting 
waves. Indeed the latter flow can also support Rayleigh instabilities associated with 
the highly inflexional velocity profiles in some directions. I n  these flows the 
possibility exists that the nonlinear interaction of the different instability 
mechanisms might produce premature transition to turbulence. In  that regard a 
potentially significant result from the recent work of Hall & Smith (1988) is that 
interacting oblique Tollmien-Schlichting waves can generate longitudinal vortices 
essentially identical to  Taylor-Gortler vortices even in the absence of wall curvature. 

One of the first calculations on the interaction of TollmienSchlichting (TS) waves 
and Gortler vortices was given by Nayfeh (1981). Nayfeh discussed the effect of a 
Gortler vortex of given size on the growth of oblique TS waves. The amplitude of the 
vortex was assigned arbitrarily however and an eigenfunction shape found by solving 
the parallel-flow-approximation Gortler-vortex equations. It is now known (Hall 
1982 a )  that, in the wavenumber regime considered by Nayfeh, these equations have 
solutions of no relevance to  spatially growing vortices. Furthermore, the amplitude 
of the vortex cannot be assigned arbitrarily; it must of course be determined by 
either a numerical or analytical solution of the NavierStokes equation as in Hall 
(1982b, 1988). Having made these approximations Nayfeh found that the vortices 
could have a massive effect on the growth of TS waves. Later Malik (1986) showed 
that Nayfeh's numerical calculations were incorrect and that his conclusions were in 
error. 

More recently Bennett & Hall (1988) examined the  efiect of finite-amplitude 
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Gortler vortices in fully developed flows on the growth of lowtr-branch TS waves. 
Here the nonlinear vortex state was found by solving the Xavier-Stokes equations 
and a linear stability analysis of the solutions was given. I t  was shown that even 
small-amplitude vortices can have a significant effect on TS growth rates. The vortex 
flow found by Bennett & Hall had a wavelength comparable with the depth of the 
channel in which the flow occurred. The asymptotic structure of TS waves 
appropriate to the lower branch of the neutral curve corresponds in general to TS 
waves with a small spanwise wavcmumber and Bennett & Hall showed how this 
strucaturc could be modifd to allow for a faster spanwise dependence induced by the 
vortices. 

The first nonlinear description of the interaction of vortices and TS waves was 
given by Hall & Smith (1988). Here it was shown that long-wavelength vortices and 
oblique TS waves undergo a resonant triad interaction a t  small amplitude. The 
interaction is, in the first instanve, governcd by ordinary differential triad amplitude 
equations which possess a finite time singularity. A t  higher amplitude the interaction 
is controlled by a coupled partial differential-ordinary integro-differential equation 
system. The solution of the system was found to depend crucially on the orientation 
of the TS waves to the vortices. The most dangerous type of interaction concerns TS 
waves propagating in a direction making an angle of more than 41.6" to the vortices 
since the resulting interaction produces a finite time singularity. 

The interaction problem formulated for channel flows by Hall & Smith (1988) can 
be modified to take account of a basic state which evolves in the flow direction. Thus 
Hall & Smith ( 1 9 8 9 ~ )  dcvclopcd a related theory to describe the interaction of 
longitudinal vortices with two small-amplitude TS waves propagating at equal 
angles to the flow direction. Again it was found that singular solutions are possible 
if the angle of propagation of the TS waves is chosen appropriately. Subsequently 
Hall & Smith (1989 b )  investigated thc more strongly nonlinear state which is implied 
by a particular singular solution found by Hall & Smith (1989a). I n  that strongly 
nonlinear situation it is possible to describe the key features of one form of boundary- 
layer transition. Thus Hall & Smith (1989b) describe how a two-dimensional TS wave 
undergoes a secondary instability to a pair of oblique TS waves and induces a 
longitudinal vortex structure. In fact the strongly nonlinear flow set up after the 
longitudinal vortex structure has developed ultimately develops a singularity at  a 
finite downstream location ; the flow patterns associated with all the stages described 
by Hall & Smith (19893) h a m  many similarities with those observed experimentally 
during transition. 

Here we develop a strongly nonlinear theory to describe one of the larger- 
amplitude states implied by the investigation of Hall & Smith (1988) for channel 
flows. The intcraction we describe is related to that of Hall & Smith (1989b) since the 
TS waves we introduce into the flow are sufficiently large to generate a longitudinal 
vortex field with downstream velocity component comparable with the unperturbed 
flow. The size of the TS waves is fixed by the condition that the downstream velocity 
component is perturbed at zeroth order by the vortex induced by the interacting TS 
waves. Thus this interaction leads to an O( 1 )  change from the basic state that exists 
in the absence of vortices. If the size of the TS wave is decreased then a weakly 
nonlinear bifurcation governed by a cubic-order amplitude equation typical of those 
found when using the Stuart-Watson method is retrieved. Surprisingly, the stronger 
type of interaction can occur at extremely small TS amplitudes both with and 
without wall curvature being present. The fact that  such a relatively small TS wave 
can have such a large effect on the basic state is due to the large initial forces 
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associated with the small streamwise lcngthscale of the waves. The nonlinear 
equilibrium states appropriate to this interaction must be found numerically. As a 
special limiting case we also consider the situation when the induced vortex flow has 
spanwise wavelength comparable with the depth of the channel rather than the 
wavelength of a lower-branch TS wave. We note here that other nonlinear states are 
accessible by routes other than that described in this paper ; see, for example, Hall & 
Smith (1989b) where the vortex-TS interaction for external flows is discussed. The 
question of whether the present route described is physically the most relevant or 
whether one of the ‘by-pass’ routes dominates in an experiment cannot yet be 
answered. 

In  addition, a t  small vortex wavenumbers thc three-dimensional breakdown of a 
two-dimensional TS wave can be described by an analysis of our interaction 
equations. Thus we determine the size of two-dimensional TS waves which are 
ncutrally stable to oblique TS waves. 4 key feature of this secondary instability 
process is the longitudinal vortex system induced by the interacting oblique waves. 
Furthermore the interaction can occur in a straight channel, thus yielding a 
mechanism for the breakdown of two-dimensional TS waves in parallel flows. 

We note that the procedure adopted in this paper and the related work of Hall & 
Smith (1988, 1989a, b )  is based on the high-Reynolds-number limit. Whilst this is of 
course unavoidable for the boundary-layer case, the channel flow stability problem 
can be investigated at finite Reynolds numbers. Indeed Daudpota, Hall & Zang 
(1988) have investigated the TS-vortex interaction problem for channel flows at  
finite Reynolds numbers. However, a t  finite Reynolds numbers it is only possible to 
make any analytical progress with exceedingly small disturbances which are almost 
neutral on the basis of linear theory. Thus the work of Daudpota et al. is restricted 
to  interactions which are too small to have an O( 1) effect on the unperturbed statc. 
Hence there is no overlap between the work discussed here and that of Daudpota 
et a l . ,  but in a limiting small-amplitude form our earlier calculation (Hall & Smith 
1988) reduces to the situation considered by Daudpota et al. and is consistent with 
the conclusions of the latter authors. An extension of the approach of Daudpota et al. 
into anything other than a weakly nonlinear state can only be done by solving the 
full Kavier-Stokes equations numerically ; we feel that  it is more instructive to try 
and make some analytical progress by taking the limit of high Reynolds number. 

The procedure adopted in the rest of this paper is as follows: in $2 the nonlincar 
equations governing fully nonlinear vortex flows in curved channels are described ; in 
$ 3  these equations are solved in the presence of vortices of 0(1) cross-stream 
wavenumber and the possible equilibrium states are described; in $4 the 
corresponding calculation for small-wavenumber vortices is described ; and in $5 the 
instability of two-dimensional TS waves in a straight channel is discussed through 
the interaction equations derived in $4. Finally in $6 we discuss our results and draw 
some conclusions, mainly that nonlinear effects lead to a supercritical bifurcation to 
a mixcd vortex-TS state. 

2. Formulation of the disturbance equations for curved channel flows 
Consider the flow of a viscous incompressible fluid in a curved channel with walls 

defined by r* = a,a+d with respect to cylindrical polar coordinates (r*, O*,z*). It is 
assumed that the curvature parameter, 8, defined by 

d & = -  
a’ 
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is small. The flow is driven by the streamwise pressure gradient 
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1 ap* -12vVmr* 
p ae* d2 ’ 

- 

where p and v are the density and kinematic viscosity of the fluid respectively, whilst 
V, is a typical streamwise flow speed. The pressure gradient (2.2) drives a velocity 
field v, in the streamwise direction and 

v m  = Vrn U(Y), (2.3) 

V(Y) = (i,(Y)+O(6L (2.4) 

where for small values of 6 

r* -a 
with [JO(Y) = 6 Y ( l - Y ) ,  Y = 7. (2.5a, b )  

The dimensionless variables x, z ,  and t are then defined by 

(2.6a, 6 ,  c )  

where t* denotes the (dimensional) time. If (u, v, w) is the velocity field scaled on V ,  
with respect to (x, y, z )  and the pressure is scaled on pV, then the Navier-Stokes 
equations can be written in the form 

1 au 6u av aw 
-- +-+-+- = 0, 
B ax 9 ay a Z  

( 2 . 7 ~ )  

(2 .7b)  

( 2 . 7 ~ )  

( 2 . 7 d )  

where the Reynolds number Re is defined by 

d 
Re = V,- ( 2 . 8 ~ )  

V 

and (2 .8b ,  c )  

N = (u /9 )a ,+va ,+waz .  (2 .8d)  

The Taylor number T is then defined by 

T = 4Re2S, (2.9) 

and it is known from the work of Dean (1928) that instability in the form of Taylor 
vortices occurs first for O( 1)  spanwise wavelengths with T also an O( 1) quantity In  
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view of the smallness of S i t  follows from (2 .9)  that Taylor vortices first occur a t  high 
values of the Reynolds number. The flow is therefore susceptible to  lower-branch 
Tollmien-Schlichting instabilities with wavenumbers of order Red in the azimuthal 
direction. It is the nonlinear interaction of these two modes of instability which will 
be discussed in the next section. 

However, because a primary aim of the present calculation is to shed light on the 
related external flow problem where long-wavelength Gortler vortices are important 
in the initial development of the flow, we consider a closely related interaction 
problem arising from the weakly nonlinear theory of Hall & Smith (1988). Here the 
Taylor vortices occur with spanwise wavenumbers O(Re-f) which are comparable 
with the wavenumbers of lower-branch TollmienSchlichting waves. These lon4- 
wavelength vortices occur a t  relatively high values of the Taylor number T - O(Re7) 
which requires that Re - O(&&) whereas the previous interaction has Re - 0(&;). 
Thus, for a given value of Re, the former type of interaction occurs first when S is 
increased from zero. Alternatively, for a given channel with S fixed, the former 
interaction occurs a t  the lowest values ofRe. However, there is some indication from 
the work of Hall & Smith (1988) that the second interaction can occur even a t  zero 
values of T ,  and so i t  is important to  understand its structure. 

Finally in this section we write down the form of the solutions of (2 .7)  appropriate 
to fully nonlinear Taylor vortices. Firstly, for O( 1) vortex wavelengths the pressure 
p and velocity field (u, v ,  w) can be written as 

( u , v , w )  = 

Here .ii,,ij and iij,@ are functions of t ,  y and z and satisfy 

afi a" 
ay aZ -+- = 0, 

(2.10a) 

(2.10 b )  

(2.11 a )  

( 2 . 1 1  b )  

(2.11 c )  

[v;-a,]~-- = t ( , i j q , + ~ ~ ~  ( 2 . 1 1  d )  

. i i i i= , i j="=O , y = o , 1 ,  (2.11e) 

The solution of the linearized form of the above equations shows that Taylor 
vortices grow exponentially in time for T > T, - 5162, and weakly nonlinear theory 
(Seminara 1975) can then be used to show that the most unstable mode is stabilized 
by nonlinear effects. The neutral curve for the linear stability problem is given by, 
for example, Hall (1982 b ) .  

In  the fully nonlinear regime possible stable finite-amplitude solutions of (2.1 1) can 
be found by stepping the equations forward in time until the flow equilibrates. 
Bennett & Hall (1988) investigated the instability of these vortex flows to small 
TollmienSchlichting waves. Here in contrast we allow the Tollmien-Schlichting 
waves to be sufficiently large that they have an O(1) effect on the vortex flows. 

a Z  

with V; = a;+a:. 
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FIGCRE 1. The flow structure and associated scales for the O(1)-wavelength vortex 
interaction problem. 

Figure 1 shows a summary of the flow structure and the associated scales for the 
O( 1)-wavelength interaction problem. I n  the following section we discuss the 
situation when the vortex wavelength lengthens and becomes comparable with the 
wavelength of a lowcr-branch TS wave. 

Second, if the vortex wavelength is O(Re&) we define 

z = Rp-fz, 8 = aFRp-?, (2.12 a .  b )  

and (2.10) is modified to  give 

The functions G. F >  6 and @ are now dependent on y, 2. and t and satisfy 

a6 ad -+- = 0. ay az 

( 2 . 1 3 ~ ~ )  

(2.136) 

( 2 . 1 4 ~ )  

( 2 . 1 4 ~ )  

(2.14d) 

6 = 6 = $ = 0  , y = O , l .  (2.14e) 

The linearized form of this system has unstable disturbances for any non-zero value 
of F. Indeed the neutral value of I?I is proportional t o  I C P  if k is the spanwise 
wavenumber. This means that  finite-amplitude solutions of (2.14) cannot be found 
by integrating forward in time sincc the energy of the disturbance will cascade into 
the higher harmonics. We return to  thc long-wavelength limit in $4, since we 
concentrate next on the nonlinear interaction problem for a/az = O( 1). 

3. The nonlinear evolution equations for TS waves and Taylor vortices of 
O( 1) wavelength 

Since the only major differcncc between the present calculation and that  of 
Bennett & Hall (1988) is tha t  the TS wave now has an O( 1 )  effect on the vortex, only 
the essential details of the flow structure will be given. The size of the TS wave is 
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fixed by the requirement that the nonlinear terms in the y- and z-momentum 
equations driven by the TS waves bc comparable with those in (2 .7c ,  d) .  This forcing 
is most important away from the viscous wall layers of thickness Re-; in which the 
TS waves adjust to the no-slip condition a t  the wall. It is convenient a t  this stage to 
define the small parameter E by 

E = Red. 

Supposc then that the TS wave is proportional to 

where the wavenumbcr a and the slowly varying frequency B are real. The frequency 
and amplitude of the wave must vary on the vortex timescale in order to allow for 
the situat,ion when the vortex flow is evolving in time. If the vortex flow is in 
equilibrium then the frequency and amplitude of the TS wave are constant. 

Away from the viscous layers near y = 0,1 the velocity field and pressure expand 
as 

U =  [ (';"3+[ +E'UJ, (a)..complex conjugate 

(3 . lb)  
122 
Iir 2Re' 

p = --+ -+ Po [ 2 p ,  E + complex conjugate] [ 1 + O(E') ] .  

The above expansions are substituted into (2.7) and the zeroth-order system for the 
x-independent part of the flow satisfies the vortex equations (2.11) with (d ,v" ,@,F)  
replacd by (u,, v,, wo, p,) and with forcing terms F,, F2 on the right-hand sides of 
(2.11c, d ) .  These forcing terms come from the intcraction of the TS wave with itself 
and are given by 

PI = 2[ ( -  iau, vf + i l l ,  t*:, + w1 cfz) + complex conjugate], ( 3 . 2 ~ )  

F2 = 21( - iau, w: + 1 3 ,  wf, + w ,  wt) + complex conjugate]. (3.2 b )  

(In thcsc two equations * denotes complcx conjugation.) The boundary conditions 
for (u,, v,, /to, p,) come from the no-slip condition 

u, = vo = w, = 0 on y = 0 and 1 ,  

togethcr with a periodicity condition in z. This follows from the fact that the forcing 
terms become negligible in the wall layers. 

Now consider the equations obtained from the zeroth-order approximation to  the 
TB-wave equations in the core. We find that they are identical to the corresponding 
equations in Bennett & Hall's linear analysis, so that writing a = u,+ U, we have 

(3 .3u,  6) 

ial't~, = -ply, ialrw, = -plz ,  (3.3c,  d )  

iau,+v,,+w,, = 0, iaUu, +z*,  Uu+w, Oz = 0. 
- - 

together with the slipping condition at  the walls 

v1 = 0. y = 0.1 
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Bennett & Hall simplified these equations by introducing a normalized pressure 
term $ 1  

P, = P l O ( f )  + (ia)*A(t) $(Y, 2 ) .  

u1 = AV2$/2c‘. o1 = -iaAq52//0, ui1 = -iaA$JO, 

where plo( t )  and the amplitude ,4( t )  need to  be determined and q5 satisfies the core 
equation 

I ($)u+($), = 0, $ periodic in z .  
1 

I $ = 0  on y = 0 ,  # = l  on y = l .  

A related core-flow problem arises in Smith (1979). We can now eliminate ul ,  vl, and 
7 4  from the forcing terms in the vortex equations to give 

( 3 . 5 a )  

(3 .5b )  

We note that  the last terms in these equations can, if necessary, be absorbed into the 
pressure derivatives in the y, z vortex equations. In the two-dimensional case (7 = 
o(y),$ = $(y) and we see tha t  F2 = 0. and (using (3.5)) we note tha t  r(; can be 
completely absorbed into pay. Thus for flows tha t  are strictly two-dimensional 
nonlinearity occurs only a t  larger values of the TS wave amplitude; see for example 
Hall & Smith (1982). 

Because the leading-order wave equations are inviscid it is necessary to  consider 
the flow within two viscous wall layers at y = 0 , l .  The flow in these regions is exactly 
the same as in linear theory since the TS waves are sufficiently small. Thus 

in the lower viscous layer and 
y = €*Y 

u = {(€*A,(%. t )  Y, - ~ E 1 1 / l o z ( 2 ,  t )  P, € 9 p o ( Z ,  t )  Y) 
+ [ (c61’,  e9V, E’W) E +  complex conjugate]+. . .}, 

p* = pC”i{ - 12s’x--~’~p,, Y+ [(eRP+c1O&E) + complcx conjugate]+. . .}, 
( 3 . 6 ~ )  

(3 .6b)  

where A, can be determined from A , ( x . t )  = F2/lY=, and pa from V,,,I,=,. The 
equations to  determine c‘. V .  W ,  P are 

(3.7) 

with boundary conditions IT = V = W = 0 on Y = 0, together with matching 
conditions with the core : 

I ~ + ~ ( ~ ) $ ~ 2 / y l u = o / ( 2 A o ) .  W + O  and P+p,, as Y +  co, 
and a periodicity condition in Z. An important feature of these equations is the 
presence of a second-order pressure term Q. We need to  include thjs term because the 
z-variation of the flow is relatively fast compared to  the x-variation of the waves, 
O( 1) as opposed to  O(e). so the z-derivatives of this smaller pressure will come in a t  
higher order. 

i iaci+ V,. + UL = 0, 

i( -sZ + ah, Y )  C’+ A, c’+ A,, YU’ = - iaP+ U,,, 

P,, = QU = P, = 0. i (  - i 2 + a A o  Y )  W = -Q,+ W,,, 



Tollmien -8chlichting wave5 and Tuylor-Qiirtler twtices in  curved %ow 483 

These boundary-layer equations were solved by Bennett & Hall (1988) in terms of 
the Airy function Ai(€J to give an eigen or dispersion relation. The equations 
governing the wall-layer flow are then matched to the core-flow solution to give the 
following first-order differcntial equation in Q, : 

where 

( 3 . 8 ~ )  

(3 .86)  

(3.8c,  d )  

A similar equation involving h,(z , t )  = uyI,=l arises from the boundary layer a t  
y = 1. By applying the periodicity condition in x ,  combining the two results to 
eliminate p, ,  and A we can determine the eigenrelation. This is somewhat unwieldy 
to write down but can bcst be calculated from the following: 

(3 .9a)  

whcrc 2n/k  is the period of the vortices andfn(z) and g n ( z )  satisfy the following first- 
order differential equations : 

with boundary conditions 

j ’ n ( 0 )  = 0, g n ( 0 )  = 0, 

with $ and K defined above and tn given by 

Q ein/6 

6 =-- n = 0, 1. 
(ah$ 

(3 .96)  

(3 .9c)  

(3 .9d )  

(3 .9e)  

In order to facilitate the numerical solution of the vortex equations it is convenient 
to eliminate the pressure from the y- and z-momentum to give 

u, = vo = w, = 0, y = 0,1,  

where N = &v, ay + w, a,} and @ appearing on the right-hand side of the equation for 
V, satisfies the ‘core’ equation (3 .4) .  

In  the abscnce of a Tollmien-Schlichting wave it is well known that, without any 
loss of generality, we can take u,, vo to be even functions of z ,  and w, is then an odd 
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function of z .  In  fact (3.4), (3.10) and the wall equations show that the forced 
equation also admits a solution with uo, 21, even in z with wo odd in z .  In this case Q 
and the corresponding upper wall pressure together with 4 are even functions of z .  
Thus a t  O(1) wavelengths the mixed vortcx-TS state is found by solving (3.10) 
subject to the TS wall equations (3.96, c ) .  

3.1. Thc numerical method 

When the Tollmien-Schlichting waves are small, as in the linear problem, the terms 
Fl and F, become zero to leading order and the vortex and dispersion equations then 
decouple. Bennett & Hall (1988) solved (3.10) with Fl E F, E 0 using the method of 
Rogers & Beard (1969) for solving the Taylor vortex equations, by expanding the 
vortex velocities in Fourier sine and cosine series in z and by advancing in time to 
reach a steady solution. The nonlinear terms were calculated explicitly. Equation 
(3.4) was then solved for the wave pressure 4 by using finite differences in both y and 
z and iterating to a solution. Several thousand iterations were required, thc exact 
number depending on the method used and the step lengths in y and z .  Once the skin 
frictions A,, A, and pressure derivatives $vyy lY=,, had been determined a and 0 were 
found by solving the dispersion relation (3.9) using a fourth-order Runge-Kutta 
method. The Airy functions were calculated using a combination of ordinary and 
asymptotic series, depending on the value of the argument 6.  

We could adapt that  approach to solve our unsteady nonlinear problem but we 
used the more efficient method which we now describe. First we fix the term a21A12 
that occurs in  (3.10). Starting with a guess for u, and $ we march forward in time 
using an Euler scheme with the u,, vo equations. At each time step we update $ from 
(3.4) by performing a few iterations. The forcing terms Fl and F2 can then be updated 
for the next time step. We continue this process until u, and $ have settled down to 
steady solutions. The dispersion relation (3.9) can then be solved for real a and 0. 
Once a is known the steady amplitude JAJ can be determined. Even if we were to solve 
the pressure equation (3.4) accurately at each time step, the velocities uo(t) that are 
produced before a steady solution emerges are not solutions of the physical problem. 
This is because we would find when we solved the eigenrelation (3.9) that in order to 
make 0 real we would have to have different values of a a t  each time step, whereas 
the theory requires a to be independent of time. Only when the calculation has 
settled down to a steady solution do we have anything that makes sense physically. 
This means that the algorithm may well converge on unstable solutions as well as the 
stable ones, although of course we will not be able to tell which is which. Because $ 
is only iterated upon a few times at each time step the overall time taken for this 
method is about equal to that for the linear calculation. 

Since the TS-wave part of the equations is still linear the calculation of $ and the 
solution of the eigenrelation (3.9) are unchanged from Bennett & Hall. The algorithm 
used to step forward (3.4), (3.10) in time is virtually identical to that used by Bennett 
& Hall. The only difference is the presence in (3.10) of thc forcing terms Fl and F, 
which are periodic functions of z .  All the periodic functions of z can be expanded in 
the form 

(3.1 1) 

where k is the vortex wavenumber. We recall that  the equations for the interaction 
allow a solution with un, vn and the TS wall pressure cvcn in z and wo,p,, and odd in 
z .  Thus we expect that there will be a solution of the nonlinear problem with uOn = 
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u , - ~ ,  etc. However, in order t o  allow for the possibility of solutions without this 
symmetry we did not force this constraint. A consequence of this is that  there is a 
mean (independent of x,z) flow induced in the spanwise direction and an induced 
pressure gradient in that direction is needed to satisfy a mass flow constraint. A 
similar pressure function arises in the work of say DiPrima & Stuart (1975) or Hall 
(1984). Thus we allowed for such a function in our calculations. However, thc only 
nonlinear solutions found had the above symmetries in z in which case there is no 
mean spanwise flow. It is possible that nonlinear solutions without these symrnetrics 
exist but they apparently do not bifurcate from the pure vortex flow. We postpone 
until $6 a discussion of the numerical results obtained following the scheme outlined 
above. 

4. The strongly nonlinear interaction between long-wavelength Taylor 
vortices and Tollmien-Schlichting waves * 

Here it is assumed that the channel curvature parameter S defined by (2.1) is 
sufficiently large to support Taylor vortices with cross-stream wavenumbers of order 
e = Red, More precisely we consider the limits S+ 0, Re --f 00 with f' defined by 
(2.12b) held fixed. I n  this case the basic circumferential flow can support vortices and 
oblique TS waves with comparable spanwise wavenumbers. The TS waves now have 
the structure first discussed by Smith (1979) in connection with the instability of the 
flow in an elliptical pipe. The overall size of the TS wave is again fixed by the 
condition that i t  should be sufficiently large in the core to  drive the vort.ex flow at 
zeroth order and indeed alter the mean-flow profile. The streamwise and time 
dependence of the wave will again be expressed in terms of 

E = expi{acx-J Tdt} Q ( L )  

in order t o  account for the possible evolution of the TS frequency as the vortex flow 
develops in time. The spanwise dcpendence of both modes is now of course entirely 
on the Z = ez scale. In this case the appropriate expansions of the velocity and 
pressure fields now become 

[ ( '!{:) + . . . + (Ei) E+ complex conjugate + . . . ~ (4.1 a,) i U =  

P wo 

p = - l2xe7 + p ,  iel2 + . . . + e7p,  E + complex conjugate + . . . . (4.1 6 )  

Here again the Taylor vortex functions u,, v,,, w,, p ,  and the TS functions u,, w,, w,, 
p ,  must be matched with the appropriate expansions in the wall layers. In fact the 
Taylor vortex functions satisfy (2.14) but with forcing terms arising from the 
interaction of the Tollmien-Schlichting wave with itself. The zeroth-order core 
equations for the TS wave yield the solution 

u1 = A n , ,  v, = -ids, p ,  = -Aa2[ rpdy ,  (4.2a, b,  c )  
2 

( 4 . 2 d )  
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Here A is an amplitude function of Z = E Z  and the Taylor vortex timescale t .  It 
should be noted that A cannot vary on a faster timescale more appropriate to a TS 
wave alone since the Taylor vortex cannot itself respond on such a scale induced by 
the forcing terms. With the form of the TS wave determined in the core the forcing 
terms in the vortex equations in the core can be expressed in terms of A and 0. If 
the vortex pressure is eliminated we obtain 

avo aw, 
ay az -+- = 0, (4.3a) 

{a; -a,) uo = $0  u,, + d u o ,  

u, = v, = w, = 0, y = 0,1, 

(4.3b) 

{ ~ ~ - ~ , > a ~ v , + ~ i U , u , , ,  = - ( A w , ) ~ ~ - ~ T ( ~ ~ ) ~ ~ + ~ ~ ~ { ~ A ~ ~ ( ~ ) ~ } ~ ,  ( 4 . 3 ~ )  

(4.3d) 
where A = v, ay + w, a,. 

We have anticipated above that the vortex flow in the presence of a TS wave 
should still satisfy the no-slip condition a t  the wall. In  fact the spanwise momentum 
equation for the vortex flow in the wall layers is forced by the TS waves. However, 
the forcing function decays to zero like the inverse square of the distance from the 
wall so that the appropriate matching conditions for w, are that it should vanish at 

It remains for us to determine the structure of the TS wave and Taylor vortex in 

u = {[e2A,(Z, t )  Y ,  d1V0,  E*W,] + [ (e5U,  8 V ,  2 W )  E+ complex conjugate] + . . .} ( 4 . 4 ~ )  

p = - 12e72+ d2Po + . . . + (s7PE + complex conjugate) + . . . . (4.4b) 

The spanwise momentum equation for the vortex is now the only equation forced by 
the TS wave. However, the equations for the TS wave depend only on the vortex flow 
through the shear A, so we do not solve for V,, W, and Po here. It suffices to say that 
the vortex equations in the wall layer a t  y = 0 can be solved such that the solution 
matches with the core-flow vortex solution. The zeroth-order equations for the TS 
waves in the wall layer at y = 0 are 

(4.5a) 

(4.5b) 

- 

y = O , l .  

the viscous wall layers. The appropriate expansions in the wall layer at y = 0 are 

i d +  V y +  W, = 0, 

i (  -Q+aA,  Y )  U+A, V+A,, YW = -iaP+U,,, 

Py = 0, (4.5C) 

i( -Q+aA,  Y )  W = -Pz+ W y y ,  (4.5d) 

u = v = w = o ,  Y = O  (4 .5e )  
with boundary conditions 

and matching condition 

Following Smith (1979) we can solve (4.5d) to give 

U+A,A, Y+co. (45f 1 

where 

(4.6) 
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The x-velocity component of the TS wave is then given by 

A&Jc = - A o  Pzz 2 " ( E )  +$lo, Pz { 3 9  '(6) +!#""'([) - 2Ai'(.5) " .9 '('o)} + B Ai ( E ) ,  
Ai ( 6 0 )  

(4.7) 
which matches with the core-flow solution if 

For convenience we shall henceforth denote any function involving Ai evaluated at 
to by a 0 subscript, thus for example KO is K as defined by ( 3 . 8 d )  but with 6 = Eo. A 
similar expansion procedure can be carried out in the upper layer, while the core 
equations for the TS wave show that P and Q ,  the pressures in the lower and upper 
layers respectively, are related by 

P - Q = a 2 A  P d y .  J: 
The TS pressure P can be written using (4.5b) as 

iaP = A%Jte lc=co 
so that (4.7), (4.8) now give 

where $,, is defined by (3 .8b)  with 6 = to and 

J =  V d y .  1: 
A similar calculation in the upper layer shows that 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Here A, = -aO/ay l y = l  and $1 are obtained from Eo, $o by replacing A, by A, in the 
definition of these quantities. Thus the evolution equations (4.3), (4.9), (4.10), (4.12) 
determine the TS and vortex structure as the nonlinear interactions take place. The 
vortex velocity components uo, wo, wo, the Tollmien-Schlichting amplitude A (or P ,  &) 
and frequency Q are all functions of the vortex timescale t .  Again i t  should be 
noted that the vortex structure cannot tolerate an evolution on a faster timescale 
typical of TS wave growth. 

The most efficient method we devised to solve the interaction equations is now 
described. In this method we seek a steady-state solution directly so that a, is set 
equal to zero and values for a, IAI,,,, are chosen and a guess is made for 
d ( x )  = A/lAlmax. We then use a Newton iteration procedure on the steady vortex 
equations to find the corresponding equilibrium vortex flow. The TS wall equations 
are then solved for the real a and 52 which satisfy the eigenrelation. The new 
amplitude function d ( z )  obtained from this calculation is then used in the vortex 



488 J .  Bennett, P.  Hull and F .  T .  Smith 

equations to find an ‘updated’ vortex flow. The wall equations are then used to 
‘ update ’ a, Q and the procedure continued until the vortex solution and (a ,  Q) 
converge for the given value of a,  lAlmax and p .  

It was found that, the above iteration procedure converged and typically about 100 
steps in ( 0 , l )  were taken to  integrate the vortex equations using a fourth-order 
Runge-Kutta scheme. The wall equations were solved by expanding P , Q  and the 
coefficients in (4.10), (4.12) in Fourier series in 2. It was found that about eight 
Fourier terms were usually adequate to solve the eigenrelation to the accuracy 
needed to plot the figures given later in this paper. 

5. Secondary instability of two-dimensional Tollmien-Schlichting waves 
described by the TS-vortex interaction equations 

Here we demonstrate how the interaction equations can be used to model the 
three-dimensional breakdown of two-dimensional TS waves in a straight channel. 
Suppose then that A(%, t ) ,  the wave amplitude in the core region, takes the form 

(5 .1)  A(2,  t )  = A , @ )  + A ,  eiot cospz, 

where A ,  is independent of time and is small compared with the two-dimensional 
amplitude A,.  If A ,  = 0 the TS forcing term in (4 .3)  vanishes identically so that A ,  
does not itself induce a longitudinal vortex field. This means that A,( t )  evolves as the 
solution o f a  cubic amplitude equation which must be found at higher order. In fact 
A,(t) evolves on a longer timescale than t so that in (5.1) A ,  can be treated as a 
constant. We shall determine the values of A ,  at which the three-dimensional 
perturbation in (5.1) is neutrally stable. The precise form of the perturbation in (5 .1)  
corresponds to two equally inclined oblique TS waves of the same amplitude. 

The vortex velocity field (u,, v0, w,) induced by the TS wave (5.1) can be expressed 
as 

(u,, w,, w,) = [ 4 a 2 ~ 2 A , A , ( u , ,  sinpZ, vol sinpZ, wol COSPZ) eiwt 

+ complex conjugate] + O(A;).  (5.2) 
Here (uol, wol, wol) satisfy the problem 

allol 
--pwol = 0, 
QY 

(a; - iw) uol = +,, Uh, 

(a;-iw)a;vol = -U,V,. 

uol = vol = Vhl = 0, y = 0, I ,  

which must be solved numerically (see below). 
In the lower and upper wall layers P and Q expand as 

P = Po + Pl cos pZ eiwt, Q = Qo + Q, cos pZ eiWt ~ 

and from (4 .9)  it follows that 

P,-Ql = a2[$l1 + ~ A , A ; C ~ ~ ~ ~ J , ]  

(5 .3a)  

(5.3b)  

( 5 . 3 4  

(5.3d)  

where J, = J U, uol dy. 
0 
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In  fact it can be shown that &, = - P1. If the wall equations are expanded in powers 
of A , ,  then at  zeroth order we obtain 

(5.4) 

where KO is defined by ( 3 . 8 d )  and A = iah, again. Equation (5.4) yields the usual 
neutral values of u,sZ when 

- Aih x l.()oli;, <, = -2.29%;. 
KO 

The condition (5.4) ensures that the two-dimensional TS wave is in neutral 
equilibrium. At next order we find that 

(5.5) 1 + yp2a.'Ag J1 = a2A2[  - 9 J1 + (0) @I, 

whcre 

The integral Jl and the shear uol(0) depend on o and (5.5) can be solved by taking 
real and imaginary parts to give 

(5.6a, b) 

where -~Jl++@uhl(0) = a+ih, y J 1  = c+id. (5 .6c ,  d )  

A numerical investigation of (5.3) shows that (5.6u, h)  give p2 > 0,a2Ai > 0 for 
w > 59.5. In fact the right-hand side of (5.6b) is positive for w > 0, while the right- 
hand side of ( 5 . 6 ~ )  + co when @' + co, and so three-dimensional waves oriented a t  
all angles to the flow direction can bc ncutral. However, the value ofA, corresponding 
tjo increases monotonically with pa-' so that three-dimensional waves propagating 
almost parallel to the flow direction (i.e. with small p) are, in a sense, the most 
dangerous. Thus (5.6a, b )  determine the amplitude of the two-dimensional TS wave 
which is neutrally stable to a pair of oblique waves with wavenumber p. It follows 
that a t  this amplitude there can be a secondary instability of the two-dimensional TS 
wave to a pair of equally inclined oblique modes. 

6. Results and discussion 
We first discuss our results for the interaction problem of $3  which we recall 

concerns Gortler vortices of wavelength comparable with the channel width. In this 
case finite-amplitude vortex flows are possible only for T > T, = 5162 and the least 
stable spanwise wavenumber has k = 3.951. Since there are no unstable TS waves 
with streamwise wavenumbers O(Re-f) and spanwise wavenumbers O( 1) we restricted 
our calculations to the case T > T, and spanwise wavenumber k = 3.951. 

In  figures 2, 3, we show the dependence of ulAl on Q and a for equilibrium states 
corresponding to T = 11000, and T = 22000 respectively. We see that a t  these 
Taylor numbers the neutral wavenumber and frequency both decrease monotonically 
as laAl increases. Results for T = 5500 have the same properties and are shown in 
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R 
FIGURE 2. The dependence of aA on (a) a,  ( b )  Q for T = 11000. k = 3.951. 

table 1.  From these results we deduce that a fixed-frequency disturbance bifurcates 
supercritically with increasing a. We have not computed sufficient results to draw 
such a figure in &>tail because it would require an order-of-magnitude more 
computing time than that needed to generate figures 2 .  3. Linear theory shows that 
for each of the points of figures 2, 3 the flow with infinitesimal IAl is unstable. We 
conclude that the interaction problem at O(1) vortex wavelengths leads to a 
supercritical bifurcation to a stable mixed TS-vortex state. 

Now let us turn to  our results for the interaction problem specified by (4.3). (4.9), 
(4.10) and (4.11) corresponding to a longer-scale spanwise dependence. In the absence 
of a finite-amplitude Gijrtler vortex we find that the neutral values of a and 52 
corresponding to an oblique TS wave with A - cos z or A - sin z are 

a = 4.396, 52 = 20.456. 

In the first instance we confine our remarks to the situation when > 23711 so that 
a finite-amplitude vortex can exist in the absence of TS waves. In  figure 4 we show 
how the neutral values of a.52 vary in the presence of a finite-amplitude vortex at 
different values of the Taylor number. These values correspond to the linearized 



a 
FIGURE 3. The dependence of a‘4 on (0) a, ( h )  SZ for T = 22000. k = 3.951. 

,4 a SZ 

0.1 104 4.5289 20.7614 
0.1561 4.5284 20.7600 
0.1913 4.5279 20.7585 
0.2705 4.5266 20.7542 

TABLE 1. Values of a. A and SZ for T = 5500 and k = 3.951. 

problem A + 0 and we see that both a and SZ increase monotonically with ?. We note 
that a constant-frequency TS wave will change from being stable to unstable when 
?“1 is decreased through any point on thc curve of figure 4 for ? greater than its linear 
neutral value - 23 7 11.  

Next suppose that the Taylor number is held fixed and the neutral values of a and 
52 are calculated for different values of lAlmax. When IAJ,,, + 0 then the neutral 
values of a and 52 must tend back to  the neutral values appropriate to the current 
value of the Taylor number. The results of such a c*alrulation are shown in figure 5 
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FIGL-RE 4. The drpndenc+e of a and Q on p. 

at two typical values of the Taylor number. We see that a and 52 increase 
monotonically when lAlmax increases. We conclude that the bifurcation picture for 
any constant-frequency TS wave will be as sketched in figure 6. At first sight it 
appears that this is a subcritical bifurcation to a mixed vortex-TS state. However, 
we found earlier that  a constant-frequency linear TS wave changes from being stable 
to unstable when p is decreased, so that. if we associate the terms ‘subcritical’ and 
‘supercritical’ with the linearly stable and unstable regions, we conclude that then 
a constant-frequency disturbance undergoes a supercritical bifurcation to a finite- 
amplitude state. A weakly nonlinear analysis of (4.3), (4.9), (4.10), (4.11) shows that 
when this bifurcation occurs the finite-amplitude solution is stable and we do not 
expect that there will be any finite time singularities of the full time-dependent 
problem associated with the finite-amplitude state. 

< 23711 so that in the absence of a 
Tollmien-Schliehting wave there is no vortex activity. In order to see the differences 
which emerge in this case we shall now indicate briefly how an amplitude equation 
typical of those obtained for weakly nonlinear stability problems using the 
Stuart-Watson method can be retrieved. Suppose then that the Taylor number is 
held fixed and that the neutral values of 01 and l2 are given by 

Now let us  consider the situation when 

c t = c t K .  52=52,. (6.1) 

These are the neutral values appropriate to l/llmax + 0, so that if we now write 

IAImax = $> 

where S is small and positive we anticipate that with p held fixed the appropriate 
expansions of a and 52 become 

(6.212. b )  a = a,+Sdi+ . . . )  

We sec. from (4.3) that  uo, v0, wo in (4.3) must be expanded as 

L2 = 52,+ Sfi+ . . .  . 

uo = 877 cos 22 + . . . , vo = Sd cos 22 + . . . . wo = 86 sin 2z + . . . . 
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a a 

U l2 

dependence of A,,, on (c) a, (d) SZ for the case T = 31 000. 
FIGURE 5. (a, b) The dependence of A,,, on (a) a, (b) SZ for the _case = 28511. (c, d )  The 

where d,  v", 22, satisfy 

d4v" 4 m 0  = -44012f'u&, (6 .3a,  b )  
dv" d2C 
-+2$=0 ,  -- - $UOY, -- 
dY dY2 dY4 

d=v"=22,=0 , y = 0 , l .  (6.3d) 

We note that the homogeneous form of (6.3) has a solution if 4f' w 23711, so that 
d,  v", 22, then become singular near p = Pi w 5978. In  fact these functions behave like 
1/(  f'- p') so that Zi, v*, & necessarily change sign at f'+. The wall equations (4.10) and 
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FIGURE 6. A sketch of the bifurcation diagram for a constant-frequency TS wave. 

(4.12) together with (4.11) are then found to have a solution only if &,d satisfy an 
equation of the form 

&[c+id]+d[e+if]+g+ih = 0. (6.4) 

Here c ,  d ,  e ,  f, g and h are real constants, the first four of which arise from the 
expansions of a and 52 in (4.10)-(4.12), whilst g and h arise from &, the order4 
correction to the core flow. By taking real and imaginary parts in (6.4) we can solve 
for d and &. Our numerical solution of the full problem for > 23 71 1 suggests that 
there SZ is always positive. However, because of the singularity of .ii a t  p+ it follows 
that d must change sign at 

It follows from the above that in the neighbourhood of p+ there is a change in the 
bifurcation structure of the mixed vortex-TS state ; thus on one side of this Taylor 
number the bifurcation will be supercritical whilst on the other side it will be 
subcritical. In fact this structure is discussed by Hall & Smith (1988). In the present 
investigation the iteration scheme used to solve the interaction problem of $4 failed 
to convcrge for Taylor numbers less than 25000. Until the method failed to converge 
it was found that the bifurcation to the mixed state was always supercritical. This 
suggests that at sufficiently high Taylor numbers the time-dependent interaction 
problem does not have a finite time singularity but that  a t  lower Taylor numbers 
there could be such a singularity associated with the subcritical bifurcation. 

In conclusion then we note that we have been able to find strongly nonlinear 
disturbances to curved channel flows. The size of the disturbances we have 
considered is such that they cannot be described by weakly nonlinear calculations 
based on the Stuart-Watson method. The only alternative description of such large 
disturbances would have to be based on the full Navier-Stokes equations. However, 
the advantage of the approach we have derived is that the TS-wave dependence of 
the flow is accounted for analytically. Thus the scale of the computations to be 
carried out using our approach is significantly smaller than would be the case with 
the full Navier-Stokes equations. Moreover the results obtained here and in the 
related boundary layer work of Hall & Smith (19896) encourage us to believe that the 
vortex-wave interaction approach is capable of capturing many of the significant 
stages of some routes of transition. 

= p. 
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